Localized surface plasmon resonance coupling in Au nanoparticles/phosphorus dendrimer multilayer thin films fabricated by layer-by-layer self-assembly method†

نویسندگان

  • Wen Bo Zhao
  • Jeongju Park
  • Anne-Marie Caminade
  • Seong-Jun Jeong
  • Yoon Hee Jang
  • Sang Ouk Kim
  • Jean-Pierre Majoral
  • Jinhan Cho
  • Dong Ha Kim
چکیده

Multilayer thin films of anionic gold nanoparticles (AuNPs) and cationic phosphorus dendrimers were deposited on 3-(diethoxymethyl-silyl)propylamine (3-APDMES)-coated substrates using layerby-layer (LbL) assembly driven by electrostatic interactions. The growth of Au/dendrimer multilayers composed of AuNPs with diameters of 3 nm and 16 nm and dendrimer with 2 nm diameter was monitored by UV-vis spectroscopy. The relative amounts of AuNPs and dendrimers in the multilayer films were calculated using a quartz crystal microbalance. The Au-containing multilayers have two surface plasmon bands at 530 nm and 600 nm, where the latter exhibits a red shift upon increasing the areal density of AuNPs as well as increasing the layer number. The localized surface plasmon resonance (LSPR) band of the hybrid films can be tuned by adding NaCl to the dendrimer solution or by removing the organic matrix. These results demonstrate that the near-field coupling between the LSPR bands of neighboring Au layers is responsible for the controlled absorption behavior. Au mesoporous films after removing dendrimers show LSPR sensing properties for alcohols with different refractive indices in the range 1.33–1.41. A linear relationship was obtained between the LSPR peak wavelength and the refractive index of the surrounding medium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of localized surface plasmon resonance transducers produced from Au(25) nanoparticle multilayers.

This article reports the preparation of gold plasmonic transducers using a nanoparticle self-assembly/heating method and the characterization of the films using scattering-type scanning near-field optical microscopy (s-SNOM). Nanoparticle-polymer multilayer films were prepared by the layer-by-layer assembly on glass slides by alternating exposures to monodisperse Au(25) nanoparticles and ionic ...

متن کامل

Collective and individual plasmon resonances in nanoparticle films obtained by spin-assisted layer-by-layer assembly.

Nanoscale uniform films containing gold nanoparticle and polyelectrolyte multilayer structures were fabricated by the using spin-assembly or spin-assisted layer-by-layer (SA-LbL) deposition technique. These SA-LbL films with a general formula [Au/(PAH-PSS)nPAH]m possessed a well-organized microstructure with uniform surface morphology and high surface quality at a large scale (tens of micromete...

متن کامل

The Optical Property of Core-Shell Nanosensors and Detection of Atrazine Based on Localized Surface Plasmon Resonance (LSPR) Sensing

Three different nanosensors with core-shell structures were fabricated by molecular self-assembly and evaporation techniques. Such closely packed nanoparticles exhibit fine optical properties which are useful for biochemical sensing. The refractive index sensitivity (RIS) of nanosensors was detected by varying the refractive index of the surrounding medium and the decay length of nanosensors wa...

متن کامل

Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3

The short lifetime of photogenerated charge carriers of hematite (α-Fe2O3) thin films strongly hindered the PEC performances. Herein, α-Fe2O3 thin films with surface nanowire were synthesized by electrodeposition and post annealing method for photoelectrocatalytic (PEC) water splitting. The thickness of the α-Fe2O3 films can be precisely controlled by adjusting the duration of the electrodeposi...

متن کامل

Hydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd

Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009